sábado, 25 de julho de 2020

O NÚMERO QUÂNTICO PRINCIPAL DE GRACELI [ OU OS INFINITOS NÚMEROS QUÂNTICOS] SÃO A REPRESENTAÇÃO  DE TODOS ELEMENTOS E INTERAÇÕES QUE EXISTEM DENTRO DO SISTEMA SDCTIE GRACELI.

INCLUSIVE O MOVIMENTO FLUXAL ALEATÓRIO GRACELI.

ONDE ESTES AGEM SOBRE TODOS OS OUTROS NÚMEROS QUÂNTICOS JÁ EXISTENTES.





QUE SÃO ;




X

MOVIMENTO FLUXAL ALEATÓRIO DE GRACELI -

=
X


EM TODOS OS FENÔMENOS SE ENCONTRE ESTE MOVIMENTO, E QUE É UM DOS CAUSADORES DOS SALTOS QUÂNTICOS,  E COM INFLUENCIA SOBRE OS MOVIMENTOS ALEATÓRIOS, CADEIAS , COMO TAMBÉM INTERFERE NOS SPINS E CAMINHOS  DE PARTÍCIULAS,  E QUE É EM SI UM NÚMERO QUÂNTICO POIS TEM AÇÃO DIRETA SOBRE AS ESTRUTURAS ELETRÔNICAS E COMPORTAMENTO DE TODOS AS PARTÍCULAS.

E COM ISTO É TAMBÉM UMA DIMENSIONALIDADE GRACELI [FAZENDO PARTE DO SISTEMA DECADIMESNIONAL [+] DE GRACELI [DEZ OU MAIS DIMENSÕES DE GRACELI [NÃO NECESSARIAMENTE INCLUINDO O ESPAÇO E TEMPO].

E COM ISTO TAMBÉM SE TORNA MAIS UMA CATEGORIA DO SISTEMA  SDCTIE GRACELI.

OS FLUXOS ESTÃO PRESENTES EM TODA FÍSICA, ELETRICIDADE, DILATAÇÕES, TERMODINÂMICA, ELETROMAGNETISMO, CAMPOS AFINS E SUAS UNIFICAÇÕES [ELETROFRACA], E OUTRAS., QUANTICA E RELATIVIDADE, TEORIA DE PARTÍCULAS, DE ESTADOS DA MATÉRIA E ESTADOS QUÂNTICO, INCERTEZAS E EXCLUSÕES,.

ONDE SE FORMA ASSIM, O ÁTOMO DE GRACELI, COM ESTRUTURA ELETRÔNICA DE FLUXOS E NÚMEROS ATÔMICOS VARIÁVEIS CONFORME A INTENSIDADE E FREQUÊNCIA DESTES FLUXOS..

E DENTRO DO SISTEMA SDCTIE GRACELI.




=
X


DENTRO DO SISTEMA GRACELI SDCTIE , SE TEM MAIS DE DEZ DIMENSÕES E NÃO NECESSARIAMENTE RELACIONADAS COM O TEMPO E ESPAÇO, MAS COM A ESTRUTURA [MÁTRIA E ENERGIA] ENERGIAS, FENÔMENOS E DIMENSÕES.

AGORA SERÁ EXPRESSO AS DIMENSÕES CATEGORIAIS, ONDE SE TEM UMA RELAÇÃO DIRETA COM AS CATEGORIAS DE GRACELI [DE] :

TIPOS, NÍVEIS [INTENSIDADES] POTENCIAIS [CAPACIDADES DE PRODUÇÕES E TRANSFORMAS, INTERAÇÕES, E OUTROS, E O TEMPO DE AÇÃO.

AGORA SURGE MAIS DUAS :

AS ACELERAÇÕES [VARIÁVIES COM O TEMPO] E O DIRECIONAMENTO [PARA ONDE VAI [COMO NOS MOVIMENTOS ALEATÓRIOS, OU CAMINHOS QUÂNTICO.


ABAIXO SE TEM A FUNÇÃO DE CATEGORIAS, AGORA DIMENSÕES CATEGORIAIS DE GRACELI. INCLUINDO AS OUTRAS DUAS. [ACELERAÇÕES E DIRECIONAMENTOS, E COM FLUXOS VARIADOS].



T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



http://osmaioresgeniosfisicosastronomos.blogspot.com/

ESTADOSTRANSICIONAIS-DINÃMICA GRACELI EM SDCTIE GRACELI.


DENTRO DE UM SISTEMA DE ESTADOS EM INTERAÇÕES E TRANSFORMAÇÕES  DE ESTADOS QUÂNTICOS E ESTADOS FÍSICOS, E ESTADOS DE GRACELI ENVOLVENDO ESTADOS E DIMENSÕES [DEZ OU MAIS DIMENSÕES DE GRACELI], E ESTADOS FENOMÊNICOS, DE ENERGIAS, DE CATEGORIAS E DIMENSÕES. SE TEM UM SISTEMA FÍSICO DINÂMICO E ESTRUTURAS [DE PART´CILAS E SUAS TRANSIÇÕES]  CONFORME O SDCTIE GRACELI.


O SDCTIE GRACELI DEFENDE QUE A REALIDADE FÍSICA, QUÍMICA, BIOLÓGICA,  PSICOLÓGICA, SOCIAL, ONTOLÓGICA, E METAFÍSICA,

 E MESMO EPISTÊMICA [CONHECIMENTO E LINGUAGEM]  NÃO SE FUNDAMENTA EM OBSERVADOR , ONDE O OBSERVADOR PODE ALTERAR A REALIDADE EM SI. [PODE PARA ELE, MAS NÃO A REALIDADE EM SI]. [ISTO CAI POR TERRA O PRINCÍPIO DA INCERTEZA QUÂNTICO].

E QUE A REALIDADE SE FUNDAMENTA EM SISTEMA DE INTERAÇÕES ENVOLVENDO CATEGORIAS, DEZ OU MAIS DIMENSÕES DE GRACELI, INTERAÇÕES, TRANSFORMAÇÕES, E ESTADOS FENOMÊNICOS E TRANSICIONAIS DE GRACELI.

E NÃO  APENAS EM:  ESPAÇO E TEMPO, OU MATÉRIA E ENERGIA.


OU SEJA, A REALIDADE, OU AS REALIDADES SÃO MUITO MAIS DO QUE ISTO [ESPAÇO, TEMPO , ENERGIA E MATÉRIA]. E OU OBSERVADOR.

¨SENDO QUE AQUILO QUE NÃO SE VÊ NÃO É SINAL QUE NÃO EXISTE.
 OU AQUILO QUE SE VÊ É SINAL QUE EXISTE, OU NÃO EXISTE¨.

OS TERMONS E OS RADIONS  [DE GRACELI] ONDE SÃO FEIXES DE RADIAÇÕES EM PROPAGAÇÃO NO ESPAÇO E DENTRO DA MATÉRIA, 

E QUE TAMBÉM TEM PROPAGAÇÕES NO FORMATO DE ONDAS. 

OU SEJA, É UMA DUALIDADE ONDAS PARTÍCULAS.


=
X


TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



Número quântico principal, n[editar | editar código-fonte]

número quântico principal pode tomar como valor qualquer número inteiro positivo. Como o próprio nome o sugere, este número quântico é o mais importante, pois o seu valor define a energia do átomo de hidrogênio (e de outro átomo monoelectrónico de carga nuclear Z) por meio da equação:

X
SISTEMA SDCTIE GRACELI .


onde m e e são a massa dos nêutrons e a carga do elétronε0 é a permissividade do vácuo, e h é a constante de Planck. Esta equação foi obtida como resultado da equação de Schrodinger e é desigual a uma das equações obtidas por Bohr, utilizando os seus postulados correctos.



VAMOS AGORA PARA O ÁTOMO DE BOHR.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



X
TODA E QUALQUE FORMA DE FUNÇÃO E EQUAÇÃO NO ÁTOMO DE BOHR, E OUTROS TIPOS DE MODELOS DE ÁTOMOS.



Na física atômica, o átomo de Bohr é um modelo que descreve o átomo como um núcleo pequeno e carregado positivamente cercado por elétrons em órbita circular.[1]
Ernest Rutherford, no início do século XX, realiza o experimento conhecido como espalhamento de Rutherford ,[2] no qual ele incidiu um feixe de partículas alfa (α) sobre uma folha de ouro e observou que, ao contrário do que era esperado - que as partículas deveriam ser refletidas pelos átomos de ouro considerados maciços até então -, muitas partículas atravessaram a folha de ouro e outras sofreram desvios. A partir da análise dessa experiência, afirmou que átomos eram constituídos de uma nuvem difusa de elétrons carregados negativamente que circundavam um núcleo atômico denso, pequeno e carregado positivamente.[1]
A partir dessa descrição, é fácil deixar-se induzir por uma concepção de um modelo planetário para o átomo, com elétrons orbitando ao redor do "núcleo-sol". Porém, a aberração mais séria desse modelo é a perda de energia dos elétrons através da radiação síncrotron: uma partícula carregada eletricamente ao ser acelerada emite radiações eletromagnéticas que têm energia; fosse assim, ao orbitar em torno do núcleo atômico, o elétron deveria gradativamente emitir radiações e cada vez mais aproximar-se do núcleo, em uma órbita espiralada, até finalmente chocar-se contra ele. Um cálculo rápido mostra que isso deveria ocorrer quase que instantaneamente.


Postulado de Bohr[editar | editar código-fonte]



Através das descrições quânticas da radiação eletromagnética propostas por Albert Einstein e Max Planck, o físico dinamarquês Niels Bohr desenvolve seu modelo atômico a partir de quatro postulados:[3]
  1. Os elétrons que circundam o núcleo atômico existem em órbitas que têm níveis de energia quantizados.
  2. A energia total do elétron (cinética e potencial) não pode apresentar um valor qualquer e sim, valores múltiplos de um quantum.[1]
  3. Quando ocorre o salto de um elétron entre órbitas, a diferença de energia é emitida (ou suprida) por um simples quantum de luz (também chamado de fóton), que tem energia exatamente igual à diferença de energia entre as órbitas em questão.
  4. As órbitas permitidas dependem de valores quantizados (bem definidos) de momento angular orbital, L, de acordo com a equação
onde n = 1, 2, 3, ... é chamado de número quântico principal e h é a constante de Planck.[4]
A regra 4 afirma que o menor valor possível de n é 1. Isto corresponde ao menor raio atômico possível, de 0,0529 nm, valor também conhecido como raio de Bohr. Nenhum elétron pode aproximar-se mais do núcleo do que essa distância.
O modelo de átomo de Bohr é às vezes chamado de modelo semi-clássico do átomo, porque agrega algumas condições de quantização primitiva a um tratamento de mecânica clássica. Este modelo certamente não é uma descrição mecânica quântica completa do átomo. A regra 2 diz que as leis da mecânica clássica não valem durante um salto quântico, mas não explica que leis devem substituir a mecânica clássica nesta circunstância. A regra 4 diz que o momento angular é quantizado, mas não diz por quê.

Expressão para o raio de Bohr[editar | editar código-fonte]

Considere o caso de um íon com a carga do núcleo sendo Ze e um eléctron movendo-se com velocidade constante v ao longo de um círculo de raio r com centro no núcleo.[5]
força de Coulomb sobre o electrão é
A força de Coulomb é a força centrípeta. Logo:
Usando a regra de quantização do momento angular de Bohr:
Temos para o n-ésimo raio de Bohr:
E a velocidade do electrão na n-ésima órbita:

Equação de Rydberg[editar | editar código-fonte]

equação de Rydberg, que era conhecida empiricamente antes da equação de Bohr, está agora na teoria de Bohr para descrever as energias de transições entre um nível de energia orbital e outro. A equação de Bohr dá o valor numérico da já conhecida e medida constante de Rydberg, e agora em termos de uma constante fundamental da natureza, inclui-se a carga do elétron e a constante de Planck.[1] Quando o elétron é movido do seu nível de energia original para um superior e, em seguida, recua um nível retornando à posição original, resulta num fóton a ser emitido. Usando a fórmula derivada para os diferentes níveis de energia de hidrogênio, determinam-se os comprimentos de onda da luz que um átomo de hidrogênio pode emitir. A energia de um fóton emitido por um átomo de hidrogênio é determinado pela diferença de dois níveis de energia de hidrogênio:[1]
onde ni é o nível inicial , e nf é o nível final de energia. Uma vez que a energia de um fóton está
o comprimento de onda do fóton emitido é dada pela
Isto é conhecido como a equação de Rydberg, e o R da constante Rydberg é  , ou  em unidades naturais . Esta equação foi conhecida no século XIX pelos cientistas que estudavam a espectroscopia, mas não havia nenhuma explicação teórica para estas equações ou uma previsão teórica para o valor de R, até Bohr. A propósito, a derivação de Bohr da constante Rydberg, bem como o acordo concomitante da equação de Bohr com as experimentalmente observadas linhas espectrais de Lyman (), Balmer (), e Paschen (), e a previsão teórica bem sucedida de outras linhas ainda não observadas, foi uma das razões para o seu modelo ser imediatamente aceito. Para aplicar em átomos com mais de um elétron, a equação de Rydberg pode ser modificada pela substituição de "Z" por "Z - b" ou "n" por "n - b", em que b é uma constante que representa o efeito de triagem devido a outros elétrons. Isto foi estabelecido empiricamente antes de Bohr apresentar seu modelo.[6]

Níveis energéticos dos elétrons em um átomo de hidrogênio[editar | editar código-fonte]

O modelo do átomo de Bohr explica bem o comportamento do átomo de hidrogênio e do átomo de hélio ionizado, mas é insuficiente para átomos com mais de um elétron.
Segue abaixo um desenvolvimento do modelo de Bohr que demonstra os níveis de energia no hidrogênio.
Sejam as seguintes convenções:
1. Todas as partículas são como ondas e, assim, o comprimento de onda do elétron, está relacionado à sua velocidade por
onde h é a constante de Planck e me, a massa do elétron. Bohr não tinha levantado esta hipótese porque só depois é que foi proposto o conceito associado a esta afirmação (veja dualidade onda-partícula). Porém, permite chegar na próxima afirmação.
2. A circunferência da órbita do elétron deve ser um múltiplo inteiro de seu comprimento de onda:
onde r é o raio da órbita do elétron e n, um número inteiro positivo.
3. O elétron mantém-se em órbita por forças eletrostáticas. Isto é, a força eletrostática é igual à força centrípeta:
onde  e qe, a carga elétrica do elétron.
Temos três equações e três incógnitas: v e r. Depois de manipulações algébricas para obter v em função das outras variáveis, pode-se substituir as soluções na equação da energia total do elétron:
Pelo teorema do virial, a energia total simplifica-se para
Ou, depois de substituídos os valores das constantes:[7]
Assim, o menor nível de energia do hidrogênio (n = 1) é cerca de -13.6 eV. O próximo nível de energia (n = 2) é -3.4 eV. O terceiro (n = 3), -1.51 eV, e assim por diante. Note que estas energias são menores que zero, o que significa que o elétron está em um estado de ligação com o próton presente no núcleo. Estados de energia positiva correspondem ao átomo ionizado, no qual o elétron não está mais ligado, mas em um estado desagregado.
O modelo atômico de Bohr pode ser facilmente usado para a composição do modelo atômico de Linus Pauling. Apenas somando as camadas e as colocando na ordem de Pauling.

Frequência[editar | editar código-fonte]

A frequência orbital[5]
 (X)
Onde  é a velocidade angular orbital do elétron.
A partir da Equação - acima - do movimento orbital mantido pela força de Coulomb acima temos
Substituindo esta expressão na Equação (X) temos:
 (Z)
Para o átomo - , a qual está na região ultravioleta do espectro electromagnético.
Se o elétron irradia, a energia E irá decrescer tornando-se cada vez negativa e a partir da Equação do raio da órbita r também diminui. O decréscimo em r na Equação (Z), provoca um aumento na frequência f.
De modo que temos um efeito de pista que quando a energia é irradiada, E diminui, o raio orbital r diminui, a qual por sua vez causa um aumento da frequência orbital f e aumentando continuamente a frequência irradiada.
Este modelo planetário prevê que o electrão se mova em espiral para dentro em direção ao núcleo, emitindo um espectro contínuo. Calcula-se que este processo não dure mais do que , um tempo muito curto na verdade.



X

Estrutura eletrônica

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa
Na química quântica, a estrutura eletrônica é o estado do movimento de elétrons em um campo eletrostático criado por núcleos estacionários.[1] O termo engloba tanto as funções de onda dos elétrons e as energias associadas a elas. Estrutura eletrônica é obtida através da resolução de equações da mecânica quântica para o referido problema de núcleos presos.
Os problemas de estrutura eletrônica surgem da aproximação de Born–Oppenheimer. Junto com as dinâmicas nucleares, o problema da estrutura eletrônica é uma das duas etapas no estudo do movimento de um sistema molecular em mecânica quântica . Exceto por um pequeno número de problemas simples, tais como átomos hidrogenóides, a solução de problemas da estrutura eletrônica requerem computadores modernos.
O problema da estrutura eletrônica  é rotineiramente resolvido com programas computacionais para química quântica. Cálculos de estrutura eletrônica encontram-se entre as mais computacionalmente intensivas tarefas de todos os cálculos científicos. Por esta razão, os cálculos de química quântica são ações importantes  e tomam muito tempo em supercomputadores científicos.
Um grande número de métodos para obter eletrônico estruturas existentes e sua aplicabilidade varia de caso para caso.[2]